Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 451  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

Year : 2010  |  Volume : 2  |  Issue : 2  |  Page : 80-87

Electron paramagnetic resonance spectroscopy in radiation research: Current status and perspectives

1 Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, Timarpur Delhi - 110054, India
2 Division of Chemistry and Biochemistry, Medical Faculty, Armeiska Street No. 11, Trakia University, Stara Zagora, Bulgaria
3 Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi -110 062, India

Correspondence Address:
Rakesh Kumar Sharma
Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, Timarpur Delhi - 110054
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0975-7406.67006

Rights and Permissions

Exposure to radiation leads to a number of health-related malfunctions. Ionizing radiation is more harmful than non-ionizing radiation, as it causes both direct and indirect effects. Irradiation with ionizing radiation results in free radical-induced oxidative stress. Free radical-mediated oxidative stress has been implicated in a plethora of diseased states, including cancer, arthritis, aging, Parkinson's disease, and so on. Electron Paramagnetic Resonance (EPR) spectroscopy has various applications to measure free radicals, in radiation research. Free radicals disintegrate immediately in aqueous environment. Free radicals can be detected indirectly by the EPR spin trapping technique in which these forms stabilize the radical adduct and produce characteristic EPR spectra for specific radicals. Ionizing radiation-induced free radicals in calcified tissues, for example, teeth, bone, and fingernail, can be detected directly by EPR spectroscopy, due to their extended stability. Various applications of EPR in radiation research studies are discussed in this review.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded262    
    Comments [Add]    
    Cited by others 10    

Recommend this journal