Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 3810  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

 Table of Contents  
Year : 2012  |  Volume : 4  |  Issue : 3  |  Page : 207-211  

Carcinogenic effects of N-nitroso-3-(substituted phenylimino)-indolin-2-one derivatives

1 Department of Chemical Engineering, University of Rovira i Virgili, 26, Av. Paisos Catalans, Tarragona, Spain
2 Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Faramagudi, Ponda, Goa, India
3 Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Jyothi Nagar, Rajiv Gandhi Salai, Thorapakkam, Chennai, Tamil Nadu, India
4 Institute of Tuberculosis Research, University of Illinois, Chicago, USA
5 Bangalore Antibiotics & Biologicals Pvt. Ltd. Salem, Tamilnadu, India

Date of Submission25-Aug-2011
Date of Decision19-Dec-2011
Date of Acceptance31-Dec-2011
Date of Web Publication26-Jul-2012

Correspondence Address:
Panneerselvam Theivendren
Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Faramagudi, Ponda, Goa
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0975-7406.99035

Rights and Permissions

Aim: A novel series of N-nitroso-3-(substituted phenylimino)-indolin-2-one 3a-h was synthesized and tested for carcinogenic effects. Materials and Methods: The synthesized pyrazole derivatives' chemical structures were proved by means of their infra red (IR), proton nuclear magnetic resonance ( 1 H-NMR), and mass,and confirmed by elemental analyses. The carcinogenic activity was assessed by 3-(4,5dimethyl thiazole-2yl)-2,5-diphenyltetrazoliumbromide (MTT) cell-viability assay. Results: The results show that most of the synthesized compounds exhibit significant carcinogenic activities. Among the synthesized compounds, N-nitroso-3-(2,4-dinitrophenylimino)-indolin-2-one 3h exhibited the most potent carcinogenic activity. Conclusion: The structure-activity relationship (SAR) studies show that the nature as well as the position of the amine are important for deciding the activity profile of the indolin-2-one derivatives, which reiterates the need for further experimental investigations.

Keywords: Carcinogenic activity, MTT cell-viability assay, N-nitrosoisatin, Schiff base

How to cite this article:
Kumarasamy M, Theivendren P, Govindarajan R, Franzblau SG, Ramalingam K. Carcinogenic effects of N-nitroso-3-(substituted phenylimino)-indolin-2-one derivatives. J Pharm Bioall Sci 2012;4:207-11

How to cite this URL:
Kumarasamy M, Theivendren P, Govindarajan R, Franzblau SG, Ramalingam K. Carcinogenic effects of N-nitroso-3-(substituted phenylimino)-indolin-2-one derivatives. J Pharm Bioall Sci [serial online] 2012 [cited 2022 Dec 3];4:207-11. Available from:

Nitroso (NO) compounds are divided into the nitrosamines, derived from dialkyl, alkaryl, diaryl, or cyclic secondary amines; and the nitrosamides, derived from N-alkylureas, N-alkylcarbamates, and simple N-alkylamides. Most tested nitrosamines and nitrosamides have proved to be strong carcinogens. [1] N-nitrosoamines are an important class of environmental carcinogens, and may play a role in carcinogenesis in the nasal cavity, larynx, trachea, intestine, Harderian gland and lips. Heterocyclic N-nitrosamines are a well-characterized class of carcinogens with varying organ specificities. [2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12] They require metabolic activation for their biological activity. [13],[14],[15],[16],[17],[18],[19] Isatin and its derivatives show diverse and marked biological activities such as anticancer, anticholinesterase, anti[convulsant, anti-inflammatory, antihypertensive, hypoxia, antimicrobial, antineoplastic, antiulcer, and antiviral activities, as well as some central nervous system activities. [20] However, nitrosoisatin with substituted aromatic primary amine results in the formation of the corresponding biologically inactive compounds.

In view of these important applications and as a continuation of our earlier work we report, in the present paper, the results of nitrosoisatin with aromatic primary amine on their carcinogenic effects.

   Materials and Methods Top


Melting points were measured in open capillaries on Thomas-Hoover melting point apparatus and are uncorrected. Infrared spectra were recorded on the ABB-Bomem Fourier transform infrared (FT-IR) spectrometer MB 104. 1 H-NMR and 13 C-NMR spectra were recorded on the Bruker spectrometer. Mass spectra were recorded on JEOL GCmate™. Elemental analysis was performed on the Perkin-Elemer 2400 CHN analyser, and the values were within the acceptable limits (±0.4%) of the calculated values. The purity of the synthesized compounds was checked by thin layer chromatography (TLC), using E-Merk TLC aluminum sheets coating with silica gel 60 F254 (0.2 mm)with chloroform/methanol (9:1) as eluent and visualized in an iodine chamber. All the chemicals used were of analytical grade.

Synthesis of N-nitrosoisatin 1

To a solution of 0.1 mol of isatin or 5-bromoisatin in chloroform (200 ml) were added concentrated hydrochloric acid (30 ml) and water (30 ml) and, while stirring this mixture, solid NaNO 2 (1.65 g, 0.024 mol) was added in portions over 30 min. The stirring was continued for 4 h. The organic layer was washed with water and saturated aqueous NaHCO 3 and dried over MgSO 4 . After removal of the chloroform, the residue was recrystallized from ethanol. [21]

General procedure for synthesis of the final compounds 3a-h

quantities (0.01mol) of N-nitrosoisatin and the aromatic primary amine 2 were dissolved in 10 ml of warm ethanol and refluxed for 3 h and then checked for completion of reaction by TLC. After allowing to stand for approximately 24 h at room temperature, the products were separated by filtration, vacuum dried, and recrystallized from warm ethanol.

N-nitroso-3-(4-chlorophenylimino)-indolin-2-one 3a

Yield 96.4%; melting point (MP) 254-256°C; dmf/dmso; IR (KBR, cm−1 ): 3178 (Ar-CH), 1592 (C=C), 1331 (C-N), 1461

(N-NO), 1738 (C=O), 1611 (C=N), 751 (C-Cl); 1 H-NMRδ (ppm): 6.58-7.74 (m, 8H,Ar-H); 13 C-NMR δ (ppm):119.2, 122.7, 123.4, 123.7, 124.5, 129.6, 130.2, 131.0, 132.3, 133.8, 138.7, 151.3, 161.5, 163.3; MASS m/z: 285(M + ) (5%), 286 (M+1) (5%); Analytical Calculated for C 14 H 8 ClN 3 O 2 : C, 58.86; H, 2.82; Cl, 12.41; N, 14.71; O, 11.20. Found: C, 58.82; H, 2.77; Cl, 12.38; N, 14.68; O, 11.17.

N-nitroso-3-(4-bromophenylimino)-indolin-2-one 3b

Yield 92.6%; MP 220-222°C; dmf/dmso; IR (KBR, per centimeter): 3268 (Ar-CH), 1592 (C=C), 1334 (C-N), 1460 (N-NO), 1739 (C=O), 1610 (C=N), 582 (C-Br); 1 H-NMR δ (ppm): 6.42-7.71 (m,8H, Ar-H); 13 C-NMR δ (ppm):119.8, 121.4, 121.6, 123.7, 124.1, 124.5,129.6, 131.2, 133.0, 133.3, 138.8, 152.8, 161.7, 163.9; MASS m/z: 330 (M + ) (1.1%),332 (M+1) (5%); Anal. Calcd. for C 14 H 8 BrN 3 O 2 : C, 50.93; H, 2.44; Br, 24.20; N, 12.73; O, 9.69. Found: C, 50.90; H, 2.41; Br, 24.18; N, 12.72; O, 9.68.

N-nitroso-3-(4-fluorophenylimino)-indolin-2-one 3c

Yield 89.2%; MP 156-158°C; dmf/dmso; IR (KBR, cm−1 ): 2987 (Ar-CH), 1497 (C=C), 1385 (C-N), 1463 (N-NO), 1728 (C=O), 1615 (C=N), 1288(C-F); 1 H-NMR δ (ppm): 6.41-7.61 (m, 8H, Ar-H); 13 C-NMR δ (ppm):116.4, 116.5, 118.7, 121.6, 123.7, 123.9, 124.5, 129.6, 131.2, 138.8, 149.0, 161.3, 161.9, 163.9; MASS m/z: 270 (M + ) (3%); Anal. Calcd.for C 14 H 8 FN 3 O 2 : C, 62.46; H, 3.00; F, 7.06; N, 15.61; O, 11.89. Found: C, 62.42; H, 2.98; F, 7.02; N, 15.58; O, 11.88.

N-nitroso-3-(3-chloro-4-fluorophenylimino)-indolin-2-one 3d

Yield 66.6%; MP 210-212°C; dmf/dmso; IR (KBR, cm -1 ): 3196 (Ar-CH), 1590 (C=C), 1334 (C-N), 1463 (N-NO), 1726 (C=O), 1611 (C=N), 758 (C-Cl), 1204 (C-F); 1 H-NMR δ (ppm): 6.76-8.21 (m, 7H, Ar-H); 13 C-NMR δ (ppm):117.8, 118.4, 121.4, 122.2, 122.3, 124.1, 124.5, 129.6, 131.2, 138.5, 150.8, 161.2, 161.7, 163.4; MASS m/z: 303 (M + ) (10%),304 (M+1) (7%); Anal. Calcd. for C 14 H 7 ClFN 3 O 2 : C, 55.37; H, 2.32; Cl, 11.67; F, 6.26; N, 13.84; O, 10.54. Found: C, 55.34; H, 2.30; Br, 11.66; N, 13.84; O, 10.53.

N-nitroso-3-(4-methylphenylimino)-indolin-2-one 3e

Yield 37.7%; MP 216-218°C; dmf/dmso; IR (KBR, cm−1 ): 3257 (Ar-CH), 1592 (C=C), 1333 (C-N), 1463 (N-NO), 1742 (C=O), 1611 (C=N), 2910 (C-CH 3 ); 1 H-NMR δ (ppm): 6.58-8.04 (m, 8H, Ar-H), 2.2 (s.3H, CH 3 ); 13 C-NMR δ (ppm):24.3, 117.6, 121.9, 122.2, 122.3, 124.1, 129.6, 130.2, 130.4, 131.3, 136.8, 138.6, 150.4, 161.0, 163.4; MASS m/z: 265 (M + ) (15%); Anal. Calcd.for C 15 H 11 N 3 O 2 : C, 67.92; H, 4.18; N, 15.84; O, 12.06. Found: C, 67.90; H, 4.17; N, 15.82; O, 12.04.

N-nitroso-3-(4-methoxyphenylimino)-indolin-2-one 3f

Yield 61.3%; MP 225-227°C; dmf/dmso; IR (KBR, cm−1 ): 3118 (Ar-CH), 1499 (C=C), 1332 (C-N), 1460 (N-NO), 1738 (C=O), 1611 (C=N), 2833 (CO-CH 3 ); 1 H-NMR δ (ppm): 6.78-8.21 (m, 8H, Ar-H), 3.3 (s, 3H, OCH 3 ); 13 C-NMR δ (ppm): 55.8, 115.4, 115.6, 117.6, 121.7, 123.1, 123.3, 124.6, 129.4, 131.2, 138.8, 145.6, 159.3, 161.8, 163.6; MASS m/z: 281(M + ) (3%); Anal. Calcd. for C 15 H 11 N 3 O 3 : C, 64.05; H, 3.94; N, 14.94; O, 17.07. Found: C, 64.03; H, 3.93; N, 14.92; O, 17.05.

N-nitroso-3-(4-nitrophenylimino)-indolin-2-one 3g

Yield 95.4%; MP 88-90°C; dmf/dmso; IR (KBR, cm−1 ): 3370 (Ar-CH), 1584 (C=C), 1301 (C-N), 1471 (N-NO), 1734 (C=O), 1621 (C=N), 1367 (C-NO 2 ); 1 H-NMR δ (ppm): 6.92-8.21 (m, 8H, Ar-H); 13 C-NMR δ (ppm): 117.8, 121.4, 122.6, 122.7, 123.1, 123.3, 124.5, 129.6, 131.2, 138.8, 146.8, 158.8, 161.7, 163.9; MASS m/z: 296 (M + ) (7%); Anal. Calcd. for C 14 H 8 N 4 O 4 : C, 56.76; H, 2.72; N, 18.91; O, 21.60. Found: C, 56.74; H, 2.71; N, 18.90; O, 21.58.

N-nitroso-3-(2, 4-dinitrophenylimino)-indolin-2-one 3h

Yield 76.4%; MP120-122°C; dmf/dmso; IR (KBR, cm−1 ): 3335 (Ar-CH), 1584 (C=C), 1301 (C-N), 1464 (N-NO), 1732 (C=O), 1624 (C=N), 1388 (C-NO 2 ); 1 H-NMR δ (ppm): 7.03-8.28 (m, 7H, Ar-H); 13 C-NMR δ (ppm): 117.8, 120.4, 121.6, 124.1, 124.5, 128.3, 129.6, 131.2, 138.0, 142.3, 147.8, 154.2, 161.0, 163.3; MASS m/z: 341 (M + ) (2%); Anal. Calcd. for C 14 H 8 N 5 O 6 : C, 49.28; H, 2.07; N, 20.52; O, 28.13. Found: C, 49.26; H, 2.07; N, 20.50; O, 28.11.


The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay measures the metabolic activity of the viable cells. [22] The assay can be performed entirely in a microtiter plate (MTP). It is suitable for measuring cell proliferation, cell viability, or cytotoxicity. The reaction between MTT and mitochondrial dehydrogenase produces water-insoluble formazan salt. This method involves culturing the cells in a 96-well MTP and then incubating the culture with MTT solution for approximately 2 h. During the incubation period, viable cells convert MTT to a water-insoluble formazan dye. The formazan dye in the MTP is solubilized and quantified with an ELISA plate reader. The absorbance directly correlates with the cell number. This is applicable for adherent cells cultured in MTP.

MTT assay

The MTT cell viability assay was performed as previously described. [22] In brief, MTT was supplied as a stock solution (5 mg/ml PBS; pH 7.2) and sterile-filtered. First, 25 μl of MTT solution was added to each well and then, after 4 h at 37°C, 100 μl of solubilizing buffer (10% Sodium dodecyl sulphate (SDS) dissolved in 0.01 N HCl) was added to each well. After overnight incubation, the absorbance was determined by an ELISA plate reader (FLASHScan® S12, Analytik Jena, Germany) at 570 nm as a read-out for cell viability. The viable cells produced dark blue formazan products, whereas no such staining was observed in dead cells. Cell viability of treated samples (SampleV) was calculated in reference to the untreated control cell line, which was defined as 100% viability (maximal viability; MaxV). The H 2 O 2 -treated cell control was defined as minimal viability reference (minimal viability; MinV). Thus, the degree of inhibition of drug-treated cells can be expressed as a percentage of the untreated cell control, using the formula:

Viability (%) = [100 × (SampleV-MinV)/(MaxV-MinV)]

   Results and Discussion Top

N- Nitrosoisatins were prepared from isatin, sodium nitrite, and hydrochloric acid by nitrosation and subjected to Schiff reaction with aromatic amines. The series of novel isatin derivatives 3a-h are presented in Scheme, [Table 1]. The compound of this study were characterized by IR, 1 H-NMR, 13 C-NMR, and mass spectral data and confirmed by elemental analysis. The biological evaluation leads to better understanding of the importance of the interaction of chemical moieties with structural features of the synthesized compounds. Substitution of aryl amine in the 3 rd position of the nitrosoisatin ring [Figure 1] significantly affects the anticancer activity. N-Nitrosamines have been drawing considerable interest in recent years due to their strong carcinogenic and mutagenic properties. In the present investigation we have substituted aryl amine at the 3 rd position, which enhances the carcinogenic activity. The carcinogenic effect of compounds 3a-h was assessed by comparing them with comparing them with control. The results are summarised in [Table 2]. The percentage viability of cells was compared with control (100% viable cell). The results show that at 200 μm dose, compounds 3h, 3a, 3c, 3e, and 3g exhibit high carcinogenic activity, compounds 3b and 3f exhibit moderate activity, and compound 3d relatively less activity. At a dose of 100 μm, compound 3h exhibits high activity,compounds 3e and 3g exhibit moderate activity, and compound 3b exhibits less activity. At 50 μm dose, compound 3h exhibits high activity, while compounds 3e, 3g, 3b, and 3f relatively less activity. At low dose, compounds 3a, 3c, and 3h exhibit high activity, compound 3b exhibits moderate activity, and compound 3g exhibits less activity. Among these compound N-nitroso-3-(2, 4-dinitrophenylimino)-indolin-2-one 3h [Figure 2] exhibits high activity. All the Schiff bases were to be devoid of anticancer activity at the experimental dose levels due to the effect of the aryl amine substituents in the 3 rd position of N-nitrosoisatin.
Figure 1: The active position of nitrosoisatin ring for carcinogenic activity

Click here to view
Figure 2: The active substituent's of aryl ring for carcinogenic activity

Click here to view
Table 1: Carcinogenic studies of synthesized compounds

Click here to view
Table 2: Carcinogenic studies of synthesised compounds

Click here to view

In conclusion, the present study highlights the importance of the structural features in the carcinogenic activity of N-nitrosoisatins. Further investigations involving quantitative structural activity relationship (QSAR) and pharmacokinetic parameters are required to identify the exact chemical entities responsible for the potent anticancer activity, which may form a novel lead to anticancer therapy in this millennium.

   References Top

1.Loeppky RN, Outram JR. N-Nitroso compounds: Occurence and biological effects. Lyon: IARC Scientific Publishers;1982.  Back to cited text no. 1
2.Druckrey H, Preussmann R, Ivankovic S, Schmahl D. N-nitrosocompounds in organotropic and transplacental carcinogenesis. Ann N Y Acad Sci 1969;163:676-96.  Back to cited text no. 2
3.Garcia H, Keefer L, Lijinsky W, Wenyon CE. Carcinogenicity of nitrosothiomorpholine and 1-nitrosopiperazine in rats. Z Krebsforsch 1970;74:179-84.  Back to cited text no. 3
4.Goodall CM, Lijinsky W, Tomatis L. Tumorigenicity of N-nitrosohexamethyleneimine. Cancer Res 1968;28:1217-22.  Back to cited text no. 4
5.Greenblatt M, Lijinsky W. Nitrosamine studies: Neoplasms of liver and genital mesothelium in nitrosopyrrolidine-treated MRC rats. J Natl Cancer Inst 1972;48:1687-96.  Back to cited text no. 5
6.Lijinsky W, Lee KY, Tomatis L, Butler WH. Nitrosoazetidine - a potent carcinogen of low toxicity. Naturwissenschaften 1967;19:1-2.  Back to cited text no. 6
7.Lijinsky W, Taylor HW. Carcinogenicity of methylated nitrosopiperidines.Int J Cancer 1975;16:318-22.  Back to cited text no. 7
8.Lijinsky W, Taylor HW. Carcinogenicity of methylated dinitrosopiperazines in rats. Cancer Res 1975;35:1270-3.  Back to cited text no. 8
9.Lijinsky W, Taylor HW. Increased carcinogenicity of 2,6-dimethylnitrosomopholine compared with nitrosomopholine in rats. Cancer Res 1975;35:2123-5.  Back to cited text no. 9
10.Lijinsky W, Tomatis L, Wenyon CE. Lung tumors in rats treated with N-nitrosoheptamethyleneimine and N-nitrosooetamethyleneimine.Proc Soc Exp Biol Med 1969;130:945-9.  Back to cited text no. 10
11.Love LA, Lijinsky W, Keefer LK,Garcla H. Chronic oral administration of 1-nitrosopipcrazine at high doses to rats;2012 [In press].  Back to cited text no. 11
12.Magee PN, Barnes JM. Carcinogenic nitroso compounds. Adv Cancer Res 1967;10:163-246.  Back to cited text no. 12
13.Bartsch H, Camus A, Malaveille C. Comparative mutagenicity of N-nitrosamines in a semi-solid and in a liquid incubation system in the presence of rat or human tissue fractions. Mutat Res 1976;37:149-62.  Back to cited text no. 13
14.Elespuru RK, Lijinsky W. Mutagenicity of cyclic nitrosamines in Escherichia coli following activation with rat liver microsomes. Cancer Res 1976;36:4099-101.  Back to cited text no. 14
15.Gomez RF, Johnston M, Sinskey AJ. Activation of nitrosomorpholine and nitrosopyrrolidine to bacterial mutagens. Mutat Res 1974;24:5-7.  Back to cited text no. 15
16.Sugimura T, Yahagi TA, Nagao M, Takeuchi M, Kawachi T, Hara K, et al. Validity of mutagenicity tests using microbes as a rapid screening method for environmental carcinogens. IARC Sol Publ 1976;12:81-101.  Back to cited text no. 16
17.Volta M, Suss R. Eibau yon 3H-Thymidin, 3H-Uridin und 3H-Leucin in tetrahymena, L-Zelien und leber-explante under einfluss yon carcinogenen nitrosaminen and nitrosamiden. Arch Pharmakol Exp Pathol 1966;261:353-9.  Back to cited text no. 17
18.Zeiger E, Legator MS. Mutagenicity of N-nitrosomorpholine in the host-mediated assay. Mutat Res 1971;12:469-71.  Back to cited text no. 18
19.Zeiger E, Legator MS, Lijinsky W. Mutagenicity of N-nitrosopiperazines for Salmonella typhimurium in the host-mediated assay. Cancer Res 1972;32:1598-9.  Back to cited text no. 19
20.Silva JF, Garden SJ, Pinto AC. The chemistry of isatins: A review from 1975 to 1999. J Braz Chem Soc 2001;12:273-324.  Back to cited text no. 20
21.Daniec GM, Milewska JM, Poloski T. Conformational study of N-nitroso-2,6-diphenylpiperidin-4-ones by molecular mechanics calculations, X-ray crystallography, and 1 H and 13 c NMR Spectroscopy. J Org Chem 1995;60:7411-8.  Back to cited text no. 21
22.Ulukaya E, Ozdikicioglu F, Oral AY, Demirci M. In vitro the MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicol 2008;22:232-9.  Back to cited text no. 22


  [Figure 1], [Figure 2]

  [Table 1], [Table 2]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Materials and Me...
    Results and Disc...
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded119    
    Comments [Add]    

Recommend this journal