Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 5595  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

Year : 2013  |  Volume : 5  |  Issue : 3  |  Page : 184-190

Stability-indicating assay of repaglinide in bulk and optimized nanoemulsion by validated high performance thin layer chromatography technique

1 Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, India
2 Department of Pharmacy, King Khalid University, Abha, Saudi Arabia
3 Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India

Correspondence Address:
Mohd Aqil
Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0975-7406.116800

Rights and Permissions

A sensitive, selective, precise and stability-indicating high-performance thin-layer chromatographic (HPTLC) method for analysis of repaglinide both as a bulk drug and in nanoemulsion formulation was developed and validated. The method employed TLC aluminum plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of chloroform/methanol/ammonia/glacial acetic acid (7.5:1.5:0.9:0.1, v/v/v/v). This system was found to give compact spots for repaglinide (R f value of 0.38 ± 0.02). Repaglinide was subjected to acid and alkali hydrolysis, oxidation, photodegradation and dry heat treatment. Also, the degraded products were well separated from the pure drug. Densitometric analysis of repaglinide was carried out in the absorbance mode at 240 nm. The linear regression data for the calibration plots showed good linear relationship with r 2 = 0.998 ± 0.032 in the concentration range of 50-800 ng. The method was validated for precision, accuracy as recovery, robustness and specificity. The limits of detection and quantitation were 0.023 and 0.069 ng per spot, respectively. The drug undergoes degradation under acidic and basic conditions, oxidation and dry heat treatment. All the peaks of the degraded product were resolved from the standard drug with significantly different R f values. Statistical analysis proves that the method is reproducible and selective for the estimation of the said drug. As the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one. Moreover, the proposed HPTLC method was utilized to investigate the degradation kinetics in 1M NaOH.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded154    
    Comments [Add]    
    Cited by others 1    

Recommend this journal