Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1792  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

Year : 2018  |  Volume : 10  |  Issue : 3  |  Page : 137-143

Potential deoxycytidine kinase inhibitory activity of amaryllidaceae alkaloids: An in silico approach

1 Department of Pharmacology, Faculty of Pharmacy, University of Khartoum; Department of Pharmacology, Faculty of Pharmacy, Sudan International University, Khartoum, Sudan
2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum; Medicinal, Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, Khartoum, Sudan
3 Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
4 Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
5 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan

Correspondence Address:
Mrs. Amina I Dirar
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, PO Box 1996, Khartoum
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/JPBS.JPBS_44_18

Rights and Permissions

Background: Plants of the Amaryllidaceae family have been under intense scrutiny for the presence of a couple of alkaloidal secondary metabolites with endued cytotoxic activity, such as pancratistatin (1), 7-deoxypancratistatin (2), narciclasine (3), 7-deoxynarciclasine (4), trans-dihydronarciclasine (5), and 7-deoxy-trans-dihydronarciclasine (6). Nevertheless, preclinical evaluation of these alkaloids has been put on hold because of the limited quantity of materials available from isolation. Aim: To explore the underlying cytotoxic molecular mechanisms of the Amaryllidaceae alkaloids (1–6) and to assess their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles using chemoinformatic tools. Materials And Methods: AutoDock 4.0 software along with different in silico chemoinformatic tools, namely PharmMapper, Molinspiration, MetaPrint2D, and admetSAR servers, were used to assess the drugability of the Amaryllidaceae alkaloids (1–6). Results: Deoxycytidine kinase (dCK) (PDB: 1P60) was predicted as a potential target with fitting score of 5.574. In silico molecular docking of (1–6) into dCK revealed good interactions, where interesting hydrogen bonds were observed with the amino acid residues—Gly-28 and Ser-35—located in the highly conserved P-loop motif. This motif plays a special role in dCK function. Contrary to (1), in silico pharmacokinetic results have shown good absorption and permeation and thus good oral bioavailability for (2–6). Conclusion: The in silico docking data have proposed that the reported cytotoxic activity of the Amaryllidaceae alkaloids (1–6) could be mediated through dCK inhibition. In addition, the ADMET profile of these alkaloids is promising and thus (1–6) could be candidates for future drug development.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded152    
    Comments [Add]    
    Cited by others 2    

Recommend this journal