Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1729  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

 Table of Contents  
Year : 2020  |  Volume : 12  |  Issue : 2  |  Page : 171-176  

The formulation of lozenge using black mulberries (Morus nigra L.) leaf extract as an α-glucosidase inhibitor

1 Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
2 Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
3 Department of Pharmaceutical Biology, Indonesia School of Pharmacy, Bandung, Indonesia

Date of Submission23-Sep-2019
Date of Decision21-Jan-2020
Date of Acceptance09-Feb-2020
Date of Web Publication15-Apr-2020

Correspondence Address:
Mr. Arif Budiman
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, Bandung 45363, Jawa Barat.
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jpbs.JPBS_219_19

Rights and Permissions

Background: Diabetes mellitus is a chronic metabolic disease, which possibly leads to kidney, brain, heart failure, and other organ complications, subsequently harming human health. These symptoms have been prevented using the leaf of black mulberry (BM), as a traditional medicine, because the phenolic compounds contained are able to decrease blood glucose concentration. Meanwhile, previous reports have shown that BM contains 1-deoxynojirimycin, with strong activity as an α-glucosidase inhibitor. The aim of this study, therefore, was to formulate and evaluate BM leaf extract in lozenge dosage form as an α-glucosidase inhibitor. Materials and Methods: The leaves of BM were extracted using the maceration method, where ethanol (70%) served as a solvent, and the inhibitory activity of the sourced α-glucosidase enzyme was determined through in vitro study. Subsequently, the extract was formulated into lozenge dosage form and evaluated for physical stability and also the effect of α-glucosidase enzyme. Results: The result showed an inhibitory activity of BM leaf extract against the enzyme α-glucosidase, with a half maximal inhibitory concentration (IC50) value of 357.6 μg/mL, whereas the lozenge formulation containing 43% of extract as well as 5% polyvinylpyrrolidone showed the best physical stability as compared to other formulas. However, the lozenge inhibits α-glucosidase enzyme with an IC50 value of 549.7 μg/mL. Conclusion: It was established that the lozenge of BM leaf extract possesses activity as an α-glucosidase inhibitor.

Keywords: α-glucosidase, black mulberry leaf extract, lozenge

How to cite this article:
Budiman A, Sofian FF, Santi NM, Aulifa DL. The formulation of lozenge using black mulberries (Morus nigra L.) leaf extract as an α-glucosidase inhibitor. J Pharm Bioall Sci 2020;12:171-6

How to cite this URL:
Budiman A, Sofian FF, Santi NM, Aulifa DL. The formulation of lozenge using black mulberries (Morus nigra L.) leaf extract as an α-glucosidase inhibitor. J Pharm Bioall Sci [serial online] 2020 [cited 2022 Aug 18];12:171-6. Available from:

   Introduction Top

Diabetes mellitus is a chronic metabolic disease with a tendency to cause kidney, brain, and heart failure, as well as other organ complications, which is harmful to health. Furthermore, the inception is often affiliated with insulin resistance or a limitation in secretion and also low sugar use.[1] This form of resistance further impairs the body cell responsiveness,[2] categorized as a prediabetic stage associated with obesity, subsequently leading to type 2 diabetes mellitus.[3]

It is expected that the worldwide estimation of sufferers in 2030 increases by over twofold from the statistics obtained in 2005.[4] This is a potentially serious medical concern, and the drug choices during treatment have continuously been improved with the aim of attaining healing. However, resistance remains a huge challenge in the quest to achieve success, leading to interests in specific targeting, especially for type 2 diabetes mellitus.[5]

The control of postprandial glucose levels is a strategy to prevent diabetes mellitus, which is achieved by inhibiting the carbohydrate hydrolysis enzymes, including α-glucosidase in digestive organs. Therefore, it is possible for specific inhibitors, consisting of voglibose and acarbose, to restrain the liberation of glucose from oligosaccharides, and subsequently decreasing postprandial glucose levels and insulin responses.[6] This class of drugs are, therefore, applied in the control of patient blood glucose, combined with dietary modifications and other antidiabetic agents.[5] Furthermore, the use of combination drug therapy tends to cause side effect and is possibly detriment to human physiology;[1] hence, it is important to identify and develop new α-glucosidase inhibitors.

Morus nigra L. (black mulberry [BM]) is well-known natural plant used as antidiabetic agents. Previous reports have shown the possibility for the leaf powder to reduce very low density lipoprotein cholesterol, low-density lipoprotein cholesterol triglycerides, fatty acids, and blood glucose in patients with type 2 diabetes mellitus. Also, the water extract caused substantial decline in the glucose levels of induced rats, subsequently leading to the regulation of oxidative stress levels, improved hexokinase activity, synthesis of glycogen, and reduction in glucose-6-phosphate formation in the liver of animals.[2],[7]

The mechanisms of BM Leaf tends to be multidirectional, as 1-deoxynojirimycin (DNJ) has been identified as the best-known main component, possessing the tendency to inhibit α-glucosidase enzyme present in the small intestine.[8] The aim of this study, therefore, was to formulate and evaluate BM leaf extract in the lozenge dosage form and also to estimate the activity of α-glucosidase inhibitor, using in vitro study. Conversely, a lozenge is a solid dosage form intended to disintegrate or dissolve slowly in the mouth, which has the following advantage: easing of consumption for pediatric and geriatric patients, and also ensuring an extended contact period between the active drug and the oral cavity.

   Materials and Methods Top


Plant material

The leaf of BM was collected from Maribaya Timur, Cibodas, West Java and authenticated by the Department of Biology, Faculty of Science, Universitas Padjadjaran, Bandung, Indonesia.


The α-glucosidase enzyme was purchased from Sigma-Aldrich (Saint Louis, MI. USA), and all other chemicals used were of technical grade.


The leaves of BM were dried in an oven at 35oC–40oC, and subsequently extracted using 70% ethanol with a maceration method for 24 hours (×3) at ambient temperature. The ethanol was removed by a rotary evaporator (IKA RV 10, IKA Company, Staufen, Germany) at 40°C to obtain the crude extract.[9],[10]

Phytochemical screening extract

Phytochemical screening was conducted to evaluate the presence of secondary metabolites, including flavonoids, alkaloids, polyphenols, tannins, saponins, quinones, steroids/triterpenoids, monoterpenes, and sesquiterpenes.[11]

Formulation of lozenge

The lozenge formulation consisting of BM leaf extract and all other ingredients was prepared through wet granulation, and the granules were subsequently dried in the oven at 40oC for 6h. These were then directly compressed into tablets with a press, filling an average weight of 650mg, with the composition shown in [Table 1].
Table 1: Formulation of black mulberry leaf extract lozenges

Click here to view

Evaluation of black mulberry leaf extract granules (pre-compression parameters)

The granules consisting of BM leaf extract and excipient were evaluated using flow properties, determined with angle of repose and compressibility parameters by Carr’s index, as well as tapped and bulk density.[12],[13]

Evaluation of black mulberry leaf extract lozenge (post-compression parameters)

The thickness and weight variation

A total of 20 lozenges per formula were measured for thickness testing, using a Vernier Caliper. Also, 20 tablets were individually weighed using an electronic balance, and the values obtained were compared to the average tablet weight, and the results presented as mean ± standard deviation (SD).[13]


The hardness of 10 lozenges for each formula was determined using the tablet hardness tester instrument (VK 200 Tablet Hardness Tester, Varian, North Carolina, USA), and the results presented as mean ± SD.[14]


Twenty lozenges from each formula were accurately weighed and placed in tablet friability tester (Varian Friabilator 25–4000, North Carolina, USA), which rotated at 25rpm for 4min. These were subsequently brushed and reweighed, and then the percent of weight loss was calculated using the formula: % friability = ([initial weight – final weight]/initial weight) × 100.[13]

Disintegration time

The disintegration time analysis of lozenges was conducted according to USP 30, using a disintegration tester instrument (Erweka ZT6-1-D, Langen, Germany) containing the phosphate buffer medium maintained at pH 6.2 and 37°C ± 0.5°C.[15]

Stability test

Stability studies were conducted at 40oC with relative humidity (RH) 75%, and also at room temperature (25oC) with 75% RH for 30 days. Also, other physical parameters of lozenges were evaluated, including hardness, friability, and dissolution time.[16]

Determination of α-glucosidase inhibitory activity

Ten μL of BM leaf extract and the formulated lozenges were briefly dissolved, respectively, in dimethyl sulfoxide at varying concentrations. This was then mixed with 40 μL of phosphate buffer (pH 7.0) and 25 μL of p-nitrophenyl-α-D-glucopyranoside, followed by incubation at 37°C for 5min, and the addition of 25-μL α-glucosidase solution. The mixture was, therefore, incubated at 37°C for 15min, prior to the incorporation of 100 μL of Na2CO3 solution (0.2 M) to terminate the reaction, which was then monitored at 405nm using a microplate reader. Furthermore, the half maximal inhibitory concentration (IC50) value was calculated from the concentration–effect linear regression curve, where acarbose was adopted as a positive control.[17],[18]

Statistical analysis

The experimental data, including in vitro study and physical stability presented as mean of samples ± SD, were statistically analyzed using one-way analysis of variance (ANOVA) method. However, Kruskal–Wallis analysis method was used on instances where the data were not normally distributed.[19]

   Result and Discussion Top

The determination results obtained at the Department of Biology, Faculty of Science, Universitas Padjadjaran showed Morus nigra L. as the species of BM leaves used in this study. Also, maceration method was adopted in the extraction process, in an attempt to protect compounds, especially those responsible for the inhibition of α-glucosidase enzyme, contained in the BM leaves from thermal decomposition.[11] Furthermore, 70% ethanol was used as a solvent, based on the universal dissolution characteristics for both polar and nonpolar constituents,[20] producing a rendement value of 21.83%.

The phytochemical screening conducted to determine the presence of secondary metabolites detected flavonoids, polyphenols, tannins, steroids and triterpenoids, and also saponins. This result supports the assumption that α-glucosidase inhibitory compounds exist in BM leaf, encompassing flavonoids, phenolic acid, flavonol derivative, and polyphenols.[18]

α-Glucosidase is a determinant enzyme affiliated with the inception of postprandial hyperglycemia, attained by the hydrolysis of oligosaccharides (type 2 diabetes mellitus).[21] Furthermore, acarbose and voglibose are well-known commercial brands used in treatment, which show numerous side effect, including liver disorders, flatulence, and hepatic injury.[22],[23] Also, the leaf of BM has been reported to possess effective α-glucosidase inhibitory activity.[24]

This potential was determined through tests and a comparison was made using acarbose as a positive control. Furthermore, the inhibition profile was ascertained with the IC50 values using the dose–response curves obtained through the serial dilution of BM leaf extract and acarbose, at concentrations of 4000–62.5 μg/mL.[6] The IC50 calculated for BM leaf extract was 228.5 μg/ mL ± 11.4, whereas the value for kojic acid was 357.6 μg/ mL ± 10.5. This, therefore, indicates the potential for the material studied to serve as a α-glucosidase inhibitor, although statistical analysis showed no significant difference (P < 0.05) in activity, compared to IC50 of acarbose.

The 1-deoxynojirimycin (DNJ) content of BM leaf extract has been affiliated with the enzyme inhibitory properties, due to the ability to effectively reduce postprandial blood glucose levels.[25] Also, some previous studies showed the strong inhibitory effect of disaccharidase present in human digestive tract, implicated in the reduced conversion of disaccharides to glucose in the body. Conversely, this does not affect the absorption of sugars,[26] whereas α-glucosidase inhibitors diminish carbohydrate absorption in the intestine, subsequently decreasing blood glucose levels.[2]

The result of granules pre-compression evaluation is shown in [Table 2].
Table 2: Evaluation of pre-compression

Click here to view

The angle of repose for all formulations ranged from approximately 20o to 25o, whereas the flow rate was over 10g/s, with Carr’s compressibility index of approximately 16%–21%. These are indicative of good granule flow property for the BM leaf extract and all excipients.[13]

The results of post-compression, encompassing weight variation, diameter, thickness, hardness, friability, and disintegration time are reported in [Table 3].
Table 3: Evaluation of post-compression

Click here to view

The mechanical properties of tablet/lozenges serve as an important test in pharmaceuticals, with reference to pharmacopoeial requirements; hence, all formulations result in very low weight products, which lie within the limits. Furthermore, the friability recorded was <1%, whereas the diameter of all formula was not more than three times and not <1 1/3 the thickness. Conversely, the disintegration time for all formulas was <15min, indicating that official requirements for tablets were met.[27]

The stability test for lozenge, including friability, hardness, and disintegration time is shown in [Figure 1][Figure 2][Figure 3].
Figure 1: Friability measurement result of black mulberry leaf extract lozenges (all sample values were determined as mean ± standard deviation; n = 3)

Click here to view
Figure 2: Hardness measurement result of black mulberry leaf extract lozenges (all sample values were determined as mean ± standard deviation; n = 3)

Click here to view
Figure 3: Disintegration time result for black mulberry leaf extract lozenges (all sample values were determined as mean ± standard deviation; n = 3)

Click here to view

On the basis of friability measurements, the lozenges remained within the acceptable official requirements, which is <1%. Furthermore, statistical analysis using ANOVA showed a significance value of 0.010 (P < 0.05), which indicates the absence of any storage effects on the product friability.

On the basis of hardness measurements, some formulated lozenges remained within the official range recommended for tablets (3–40 Kp). However, the results of statistical analysis by ANOVA showed a significance value of 0.015 (P < 0.05), which indicates that there was no effect of storage on lozenge hardness.

On the basis of the disintegration time measurement, the formulated lozenges were maintained within the official range recommended for tablet (<15min). Furthermore, statistical analysis obtained using ANOVA showed a significance value of 0.010 (P < 0.05), which indicates the absence of any storage effects on lozenge disintegration time.

The formulation of lozenge containing 43% BM extract and 5% polyvinylpyrrolidone (PVP) (FVI) was selected for the determination of α-glucosidase inhibitory activity, due to the high convenience of this formula, as compared to others. Therefore, the result of α-glucosidase inhibitory activity determination is shown in [Table 4].
Table 4: Result of α-glucosidase inhibitory activity determination for formulated lozenges

Click here to view

The result showed lower activity in the BM leaf extract lozenges, as compared with acarbose and BM leaf extract, although it specifically manifested potential tyrosinase inhibitory activity. This result indicates the presence of DNJ, which possesses remarkable α-glucosidase inhibition potentials. Furthermore, statistical analysis showed significant difference (P < 0.05) between the IC50 of the formulated lozenges and the blank preparation.

   Conclusion Top

On the basis of the results and discussion, it is concluded that BM leaf extract possesses an α-glucosidase inhibitory activity, due to the IC50 value of 357.6 μg/mL. Furthermore, the formulation containing 43% BM extract and 5% PVP showed the best physical stability, whereas BM leaf extract lozenges showed high α-glucosidase inhibitory activity, with an IC50 value of 549.7 μg/mL.


The authors are grateful to Universitas Padjadjaran for the provision of financial support.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

   References Top

Ge Q, Zhang S, Chen L, Tang M, Liu L, Kang M, et al. Mulberry leaf regulates differentially expressed genes in diabetic mice liver based on RNA-seq analysis. Front Physiol 2018;9:1051.  Back to cited text no. 1
Król E, Jeszka-Skowron M, Krejpcio Z, Flaczyk E, Wójciak RW. The effects of supplementary mulberry leaf (Morus alba) extracts on the trace element status (Fe, Zn and Cu) in relation to diabetes management and antioxidant indices in diabetic rats. Biol Trace Elem Res 2016;174:158-65.  Back to cited text no. 2
Muoio DM, Newgard CB. Mechanisms of disease:molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 2008;9:193-205.  Back to cited text no. 3
Koh-Banerjee P, Wang Y, Hu FB, Spiegelman D, Willett WC, Rimm EB. Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. Am J Epidemiol 2004;159:1150-9.  Back to cited text no. 4
Lam SH, Chen JM, Kang CJ, Chen CH, Lee SS. Alpha-glucosidase inhibitors from the seeds of Syagrus romanzoffiana. Phytochemistry 2008;69:1173-8.  Back to cited text no. 5
Casirola DM, Ferraris RP. α-Glucosidase inhibitors prevent diet-induced increases in intestinal sugar transport in diabetic mice. Metabolism 2006;55:832-41.  Back to cited text no. 6
Hamdy SM. Effect of Morus Alba Linn extract on enzymatic activities in diabetic rats. J Appl Sci Res 2012;8:10-6.  Back to cited text no. 7
Kim GN, Kwon YI, Jang HD. Mulberry leaf extract reduces postprandial hyperglycemia with few side effects by inhibiting α-glucosidase in normal rats. J Med Food 2011;14:712-7.  Back to cited text no. 8
Minhas MA, Begum A, Hamid S, Babar M, Ilyas R, Ali S, et al. Evaluation of antibiotic and antioxidant activity of Morus nigra (black mulberry) extracts against soil borne, food borne and clinical human pathogens. Pak J Zool 2016;48:1381-8.  Back to cited text no. 9
Aydin S, Yilmaz O, Gokçe Z. Protective effect of Morus nigra L.(mulberry) fruit extract on the liver fatty acid profile of Wistar rats. Pak J Zool 2015;47:255-61.  Back to cited text no. 10
Budiman A, Aulifa DL, Kusuma AS, Kurniawan IS, Sulastri A. Peel-off gel formulation from black mulberries (Morus nigra) extract as anti-acne mask. Natl J Physiol Pharm Pharmacol 2017;7:1-8.  Back to cited text no. 11
Rajbhar P, Sahu AK, Gautam SS, Prasad RK, Singh V, Nair SK. Formulation and evaluation of clarithromycin co-crystals tablets dosage forms to enhance the bioavailability. Pharma Innov 2016;5:5-13.  Back to cited text no. 12
Budiman A, Husni P, Shafira, Alfauziah TQ. The development of glibenclamide-saccharin cocrystal tablet formulations to increase the dissolution rate of the drug. Int J App Pharm 2019;11:359-64.  Back to cited text no. 13
Banerjee ND, Singh M. Formulation and evaluation of compression coated tablets of cefpodoxime proxetil. Int J Pharm Sci Res 2013;4:104-12.  Back to cited text no. 14
Bajelan E, Kamali-nejad M, Albasha H. Formulation and physicochemical evaluation of lozenge tablets containing Salvia officinalis. J Young Pharm 2014;6:34.  Back to cited text no. 15
Palanisamy P, Abhishekh R, Yoganand Kumar D. Formulation and evaluation of effervescent tablets of aceclofenac. Int Res J Pharm 2011;2:185-90.  Back to cited text no. 16
Kumar D, Ghosh R, Pal BC. α-Glucosidase inhibitory terpenoids from Potentilla fulgens and their quantitative estimation by validated HPLC method. J Funct Foods 2013;5:1135-41.  Back to cited text no. 17
Jin Q, Yang J, Ma L, Cai J, Li J. Comparison of polyphenol profile and inhibitory activities against oxidation and α-glucosidase in mulberry (genus Morus) cultivars from china. J Food Sci 2015;80:C2440-51.  Back to cited text no. 18
Budiman A, Khoerunnisa R, Alfauziah, TQ. Wound-healing test of Piper betle leaf extract and aloe vera in gel preparation. Int J App Pharm 2018;10:86-1.  Back to cited text no. 19
Shaalan EA, Canyon D, Younes MW, Abdel-Wahab H, Mansour AH. A review of botanical phytochemicals with mosquitocidal potential. Environ Int 2005;31:1149-66.  Back to cited text no. 20
He H, Lu YH. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against α-glucosidase. J Agric Food Chem 2013;61:8110-9.  Back to cited text no. 21
Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M; STOP-NIDDM Trial Research Group. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003;290:486-94.  Back to cited text no. 22
Kawamori R, Tajima N, Iwamoto Y, Kashiwagi A, Shimamoto K, Kaku K; Voglibose Ph-3 Study Group. Voglibose for prevention of type 2 diabetes mellitus: A randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet 2009;373:1607-14.  Back to cited text no. 23
Park JM, Bong HY, Jeong HI, Kim YK, Kim JY, Kwon O. Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats. Nutr Res Pract 2009;3:272-8.  Back to cited text no. 24
Huang SS, Yan YH, Ko CH, Chen KM, Lee SC, Liu CT. A comparison of food-grade Folium mori (Sāng Yè) extract and 1-deoxynojirimycin for glycemic control and renal function in streptozotocin-induced diabetic rats. J Tradit Compl Med 2014;4:162-70.  Back to cited text no. 25
Hunyadi A, Liktor-Busa E, Márki Á, Martins A, Jedlinszki N, Hsieh TJ, et al. Metabolic effects of mulberry leaves: exploring potential benefits in type 2 diabetes and hyperuricemia. Evid-Based Compl Alt Med2013;2013:1-10.  Back to cited text no. 26
Majekodunmi SO, Adegoke OA, Odeku OA. Formulation of the extract of the stem bark of Alstonia boonei as tablet dosage form. Trop J Pharm Res 2008;7:987-94.  Back to cited text no. 27


  [Figure 1], [Figure 2], [Figure 3]

  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review
Maria Maqsood, Raakia Anam Saeed, Amna Sahar, Muhammad Issa Khan
Journal of Food Biochemistry. 2022;
[Pubmed] | [DOI]
2 Phytochemical characterization of Morus nigra fruit ultrasound-assisted ethanolic extract for its cardioprotective potential
Maria Maqsood, Muhammad Issa Khan, Mian Kamran Sharif, Muhammad Naeem Faisal
Journal of Food Biochemistry. 2022;
[Pubmed] | [DOI]
3 Phytochemical Screening and Antioxidant Activity of Seven Native Species Growing in the Forests of Southern Chilean Patagonia
Merly de Armas-Ricard, Francisco Quinán-Cárdenas, Harold Sanhueza, Rodrigo Pérez-Vidal, Cristina Mayorga-Lobos, Oney Ramírez-Rodríguez
Molecules. 2021; 26(21): 6722
[Pubmed] | [DOI]
4 Plants of the Spontaneous Flora with Beneficial Action in the Management of Diabetes, Hepatic Disorders, and Cardiovascular Disease
Maria Valentina Ignat, Teodora Emilia Coldea, Liana Claudia Salan?a, Elena Mudura
Plants. 2021; 10(2): 216
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Materials and Me...
    Result and Discu...
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded150    
    Comments [Add]    
    Cited by others 4    

Recommend this journal