Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 4539  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

Year : 2021  |  Volume : 13  |  Issue : 5  |  Page : 336-343

Basics of epigenetics and role of epigenetics in diabetic complications

1 Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
2 Department of Oral and Maxillofacial Pathology, Saveetha Dental College, Chennai, Tamil Nadu, India
3 Department of Oral and Maxillofacial Pathology, KSR Institute of Dental Science and Research, Namakkal, Tamil Nadu, India
4 Department of Oral and Maxillofacial Surgery, KSR Institute of Dental Science and Research, Namakkal, Tamil Nadu, India

Correspondence Address:
Andamuthu Yamunadevi
Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Elayampalayam, Namakkal - 637 205, Tamil Nadu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jpbs.JPBS_771_20

Rights and Permissions

The term “Epigenetics” includes mechanisms by which genetic expression is altered without a change in the underlying DNA sequence. The changes caused by epigenetic mechanisms are inheritable and are one way in direction (irreversible) and also explains why there is differences in genetic expressions of monozygotic twins. The epigenetic mechanisms alter the genetic expressions through DNA methylation, posttranslational modifications (PTMs) of histone, and noncoding RNAs. DNA methylation and histone PTMs cause relaxation or condensation of chromatin units. The epigenetic actions of noncoding RNAs such as microRNAs, small nucleolar RNAs, small interfering RNAs, and long noncoding RNAs act by modifying transcription factors or by degrading target messenger RNAs and their translation factors. Various pathologies and environmental factors cause changes in the cellular epigenetic mechanisms and the epigenetic alterations occurring in diabetes mellitus (DM) are reviewed. DM causes hemodynamic changes and metabolic changes like hyperglycemia and dyslipidemia. These changes induce oxidative stress and activate intracellular signaling and kinases in the target cells. Epigenetic alterations cause chromatin remodeling and altered gene expression leading to inflammation, proliferation, atrophy, hypertrophy, etc.; thereby, diabetic complications such as neuropathy, nephropathy, vasculitis result in the corresponding target organ. When these epigenetic alterations persist for a longer period without intervention, the target cells attain “metabolic memory” meaning that these epigenetic mutations cannot be reversed even after attaining normal blood glucose levels. Thus, epigenetics, an insightful and efficient tool in genomic research, has started crawling into the research arena and needs to reach leaps and bounds for the better understanding of health and diseases.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded345    
    Comments [Add]    
    Cited by others 3    

Recommend this journal