Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1583  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission




 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2021  |  Volume : 13  |  Issue : 6  |  Page : 1369-1374  

The potential combination of noni (Morinda citrifolia) fruit extract and pandan (Pandanus amaryllifolius Roxb.) leaves extract as an anti-dandruff shampoo


1 Department of Public Health, Faculty of Health Sciences, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
2 Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
3 Department of Medical Science, Faculty of Medicine, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia

Date of Submission18-Mar-2021
Date of Decision01-Apr-2021
Date of Acceptance03-Apr-2021
Date of Web Publication10-Nov-2021

Correspondence Address:
Ambarwati Ambarwati
Jl. A. Yani, Tromol Pos I, Pabelan, Kartasura, Sukoharjo 57162. Central Java
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.jpbs_205_21

Rights and Permissions
   Abstract 


Aims: The study aimed to determine the inhibition activity of a combination of Noni fruit extract and Pandan leaves extract toward bacterial isolates that cause dandruff and to determine the potential of extract combination as an anti-dandruff shampoo. Subjects and Methods: The test bacteria were isolated from dandruff. The inhibition test of the extract combination was done by paper disc and well diffusion method. The identification of bacterial isolates was done in Balai Laboratorium Kesehatan Yogyakarta. Results: The study showed that the density of bacteria isolated from dandruff was 3.4 × 107 CFU/g. There were 28 pure bacteria isolates from purification process. The combination of Noni and Pandan extracts (1:1 v/v) could inhibit the growth of 92.9% bacterial isolates. There were seven species of bacteria from a total of 28 pure isolates, namely: Bacillus licheniformis, Bacillus megaterium, Bacillus alvei, Bacillus subtilis, Micrococcus sp, Stomatococcus sp, and Pseudomonas sp. Conclusions: Based on the research, it can be concluded that a combination of Noni fruit extract and Pandan leaves extract inhibited the growth of bacteria isolated from dandruff, so the combination of the extracts has potential as an anti-dandruff shampoo.

Keywords: Antibacterial, anti-dandruff shampoo, extract, noni, pandan


How to cite this article:
Ambarwati A, Sujono TA, Sintowati R. The potential combination of noni (Morinda citrifolia) fruit extract and pandan (Pandanus amaryllifolius Roxb.) leaves extract as an anti-dandruff shampoo. J Pharm Bioall Sci 2021;13, Suppl S2:1369-74

How to cite this URL:
Ambarwati A, Sujono TA, Sintowati R. The potential combination of noni (Morinda citrifolia) fruit extract and pandan (Pandanus amaryllifolius Roxb.) leaves extract as an anti-dandruff shampoo. J Pharm Bioall Sci [serial online] 2021 [cited 2022 Jun 25];13, Suppl S2:1369-74. Available from: https://www.jpbsonline.org/text.asp?2021/13/6/1369/330008




   Introduction Top


Anti-dandruff shampoo is a shampoo specially made for dealing with dandruff on the scalp. Dandruff is one of the hair issues on the scalp that may cause discomfort due to the emergence of itching and can cause hair loss if not treated immediately. Dandruff is often complained, even 50% of the world's population, especially people with the age of 15–50 years old have dandruff on their scalp.[1] Dandruff is dead skin exfoliation results on the scalp that occurs excessively, constantly, and sometimes is followed by skin irritation. Dandruff is often characterized by itchy scalp and can cause hair loss.

Noni (Morinda citrifolia) and Pandan (Pandanus amaryllifolius Roxb.) are known to have an antibacterial effect. All parts of Noni– stem, leaf, fruit, and seeds– can inhibit the growth of some species of bacteria.[2] Noni has inhibition activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus),[3],[4] Bacillus subtilis (B. subtilis),[4] and Klebsiella pneumoniae (K. pneumoniae).[5]

The previous study shows that the ethanol extract and ethyl acetate extract of combination of Urang Aring (Eclipta prostrata) leaves and Noni leaves could inhibit the growth of seven test bacteria, namely Bacillus cereus (B. cereus), Micrococcus luteus (M. luteus), S. aureus, E. coli, Pseudomonas aeruginosa (P. aeruginosa), K. pneumoniae, and Salmonella typhimurium (S. typhimurium).[6] Other research shows that the combination of leaves and seeds of Noni could inhibit the growth of five test bacteria, namely E. coli, Pseudomonas spp, Salmonella spp, S. aureus, and Klebsiella spp. It was also found that the inhibition of Noni seed extracts was greater than the leaf extracts. While Noni fruit extracts could only inhibit the growth of E. coli and Pseudomonas spp.[7]

Other studies have shown that Morinda citrifolia L. extract mixed with irreversible hydrocolloids could reduce the percentage of microorganisms in dental impression, and did not affect the surface quality or dimensional stability of dental impression. This study also noted that mixing of M. citrifolia L. extract with irreversible hydrocolloid powder was an alternative method to prevent contamination without sacrificing the quality of the dental impression.[8]

Pandan (Pandanus amaryllifolius) has many medicinal properties such as anti-seizure, anti-oxidant, anti-virus, anti-diabetes, anti-inflammatory, neuroprotective, analgesic, anti-neoplastic, anti-microbial, and anti-diuretic.[9] Pandan (P. amaryllifolius Roxb) is known to have inhibitory properties against bacteria S. aureus and E. coli.[10],[11] It also inhibited P. aeruginosa growth.[10] Pandan leaves have been known and used by the ancestors of Indonesia as coloring and flavoring in food. Pandan leaves have a distinctive and attractive scent so these leaves are often added to food processing to enhance the aroma and provide the green color to the food. According to,[11] Pandan leaves are used in food preparation in Asian countries as a flavoring agent. It is mainly used to impart a certain aroma to rice preparations. It is then used in bread preparation to give a characteristic spicy taste.

The aim of this research were to determine the inhibition activities of combination of 96% ethanol extract of Noni fruit (EM) and 96% ethyl acetate extract of Pandan leaves (EPW) in the ratio 1:1 (v/v) against the bacteria isolated from dandruff and to found the potential combination of extracts as an anti-dandruff shampoo.

The content of chemical compounds in Noni includes scopoletin, octanoic acid, potassium, Vitamin A and C, terpenoids, anthraquinone, and carotene.[12] On the other hand, Pandan contains lignans, isoflavones, phenolic compounds, steroids, saponins, terpenoids, glycosides, tannins, and flavonoids.[9]


   Subjects and Methods Top


Subjects

The subjects in this study were bacterial isolates isolated from dandruff.

Isolation of bacteria from dandruff

Isolation was conducted by as much as 1 g dandruff diluted in 9 mL of sterile distilled water (dilution 10−1). One mL from 10−1 dilution was taken and put in 9 mL of sterile distilled water (dilution 10−2). In the same way, it made up to 10−7 dilution rate. From 10−2 to 10−7 dilution rate, 1 mL was taken and placed in a petri dish respectively. Then, in each petri dish as much as 15 mL Nutrient Agar (NA) (Oxoid, CM0003B, UK) liquid were added. After that, it was incubated at 37° C for 24 h.

Purification of bacterial isolates

Purification of bacterial isolates was carried out by colonies grown on the NA medium observed. Each colony with a different appearance was then isolated on NA medium to obtain pure isolate. The purification was used the streak plate method.

Extraction method

Extraction was done by the maceration method; the solvent used was ethyl acetate for Noni extraction and ethanol for Pandan extraction.

Antibacterial activity of the extract

Primary screening test for antibacterial activities of extract was carried out using paper disc dilution method with a diameter of paper 6 mm. The first, crude extracts 96% of ethanol Noni fruit extract (EM) and 96% ethyl acetate of Pandan leaves extract (EPW) diluted by adding Dimethyl Sulfoxide Solvent (DMSO) (1:1 w/v), respectively. After that, the combination of Noni extract and Pandan extract was made with a concentration ratio EM: EPW (3:1 v/v), (1:1 v/v), and (1:3 v/v), respectively. Paper disc was then dropped with extract volume of 10 μl respectively and placed on one of the quadrants on a petri dish containing NA media inoculated with a bacteria isolate. DMSO was used as the negative control, while antibiotic chloramphenicol 100 μg/mL (PA with 98% concentration) was used as the positive control. All cultures were then incubated at 37° C for 24 h. The level of inhibition was categorized by the diameter of inhibition zone. The diameter of the inhibition zone is categorized 7–15 mm (weak), 16–25 mm (moderate), while more than 25 mm (strong).[13]

Further screening

Further screening was done by testing the activity of the extract combinations of EM: EPW which have the highest activity to inhibit the bacterial isolates. It was conducted using a well dilution method. The concentration levels of extract combination made are 5%, 6.25%, 12.5%, 25%, 50%, and 100%. A well on one of the quadrants on a petri dish containing NA media inoculated with a test bacteria (the pure bacteria isolated from dandruff) was then dropped with extract combination (for example EM: EPW = 3:1 v/v) volume of 10 μl, respectively.

Identification of the bacteria isolates

The identification of bacteria isolated from dandruff was done by: First, Gram staining to determine cell morphology and Gram category. Second, identification down to the species level was carried out at Balai Laboratorium Kesehatan (BLK) Yogyakarta, Indonesia.


   Results Top


Isolation and purification of bacterial isolates

Based on isolation, it was known that the density of bacteria isolated from the dandruff sample of 3.4 × 107 CFU/g. The density of bacteria in dandruff indicates the level of microorganism contamination on the scalp. In fact, the cause of dandruff is fungi, yet bacteria can be present on the scalp when secondary infection occurs, for example, sores on the scalp due to scratching. A total of 28 bacterial isolates was successfully purified from the dandruff sample.

Antibacterial activity of the extract combinations

Primary screening

Based on the primary screening test for antibacterial activities of both extract combinations, it was found that the extract combination of EM: EPW (1:1 v/v) had the best inhibition activities compared to extract combinations with a ratio EM: EPW (3:1 v/v) and a ratio (1:3, v/v). The inhibition test results of EM: EPW (1:1, v/v) are presented in [Table 1].
Table 1: The inhibition test of noni fruit extract combined with pandan leaves extract against bacteria isolated from dandruff

Click here to view


Further screening

The inhibition test results of EM: EPW (1:1, v/v) are presented in [Table 2] and [Figure 1].
Table 2: The inhibition of extract combination of noni fruit extract with pandan leaves extract (1:1, v/v) against bacteria isolated from dandruff

Click here to view
Figure 1: The inhibition of extract combination of EM: extract of Pandan leaves (1: 1 v/v) against bacteria isolated from dandruff

Click here to view


Identification of the bacteria isolates

Before the identification of the isolates to the species level, the initial identification was first performed by Gram staining. The Gram staining is intended to determine cell morphology of the bacteria. The identification results are presented in [Table 3] and [Figure 2].
Table 3: The identification of bacteria isolated from dandruff

Click here to view
Figure 2: The Gram staining of bacteria isolated from dandruff

Click here to view



   Discussion Top


Antibacterial activity of the extract combinations

Primary screening

Based on [Table 1], it was found that the extract combination of EM: EPW (1:1, v/v) was able to inhibit 26 of 28 bacteria isolates (92,9%) with a diameter of the inhibition zone ranging from 13 mm to 35 mm. Besides that, it was discovered that as many as four isolates could be strongly inhibited, namely B4a with inhibition zone diameter of 29 mm, B4b and B14a (35 mm respectively), and B4c (31 mm). Therefore, a further test used combination of EM: EPW (1:1, v/v) with a ratio of various concentrations: 5%, 6.25%, 12.5%, 25%, 50%, and 100%.

Further screening

Based on [Table 2], it was noted that 89.3% of bacterial isolates were inhibited by the combination of EM: EPW = 1: 1 (v/v). The diameter of the inhibition zone formed ranged from 8 to 30 mm. Among five isolates from 25 isolates inhibited by extract combinations, those strongly inhibited were B4a, B4b, and B6a (30 mm respectively), B10a, and B14a (29 mm respectively).

Positive control used in antibacterial test was chloramphenicol 100 μg/ml where negative control was DMSO. The method used was a well method diffusion of the extract combination as much as 10 mL/well. When compared to the positive control, it was revealed that 10 isolates were inhibited more strongly by a combination of Noni fruit and Pandan leaves extracts than chloramphenicol [Table 2].

The result was consistent with the previous study by[14] revealing that the methanol extract, ethanol, and ethyl acetate from Noni fruit and Pandan leaves acted as antibacterial and inhibited 12 bacteria test, it was also known that methanol extracts had the greatest inhibition. Based on research by,[15] it was noted that the ether and ethanol extracts of Noni showed antibacterial activities and inhibited the growth of E. coli, B. subtilis, and S. aureus with inhibition zone diameter ranging from 17 to 20 mm.

Other study concluded that the hydroethanolic of Noni fruit extract inhibited 10 bacteria test.[5] Besides that, ethanol extract of Noni fruit exhibited antibacterial effects against Fusobacterium nucleatum.[16]

On the other hand, extracts of Pandan leaves comprising ethanol or ethyl acetate extract could inhibit the growth of P. aeruginosa and B. subtilis.[17] Another study concludes that crude extract of P. amaryllifolius leaves showed antibacterial activities toward S. aureus ATCC 25923 but not to E. coli ATCC 25922 and P. aeruginosa ATCC 27853.[10]

Identification of the bacteria isolates

[Table 3] shows that all of 28 isolates of bacteria isolated from dandruff could be grouped into seven categories. Furthermore, each representative further isolates was identified in BLK Yogyakarta. The identification results of the seven group bacteria were Bacillus licheniformis, Bacillus megaterium, Bacillus alvei, B. subtilis, Micrococcus sp, Stomatococcus sp, and Pseudomonas sp.

The types of active compounds in Noni fruit extract were alkaloids (1.97% w/w), phenol (12.50% w/w), and flavonoids (8.61% w/w), while the contents of the Pandan leaves extract are phenol (9.42% w/w) and flavonoids (4.39% w/w). Thus, the contents of phenols and flavonoids were higher in Noni fruit extract.[18]

This research supports the previous study which concluded that Noni leaves extract contains various compounds including tannins, phenols, alkaloids, flavonoids, glycosides, steroids, and terpenoids.[10]

This research supports the previous study which concludes that Noni leaves extract contains various compounds including tannins, phenols, alkaloids, flavonoids, glycosides, steroids, and terpenoids.[19] Meanwhile, Pandan leaves water extract contains bioactive compounds of tannins, alkaloids, flavonoids, saponins, and polyphenols.[20]

The alkaloid was capable of inhibiting cell wall synthesis which will cause cell lysis so that the cell dies. The mechanism happens by way of disrupting the peptidoglycan constituent components on a bacterial cell so that the layer of the cell wall is not perfectly formed, thus causing cell lysis either prone to physical or osmotic and cause cell death.[21] Besides that, alkaloids showed antibacterial activity as well as inhibiting ATP-dependent transport of compounds across the cell membrane.[22]

Other study showed that the phenolic and flavonoid content in P. amaryllifolius (Roxb.) leaves extract could act as antibacterial.[23] Phenolic compounds had antimicrobial activity because they possess antioxidant effects, possibly involving proton exchange processes in the antimicrobial activity.[24] Inhibition mechanisms of phenolics include inhibiting enzymes. It was suggested that this inhibition takes place through reactions with sulfhydryl groups on the proteins.[25]

Flavonoid compound tends to bind the proteins, thus disrupting the process of metabolism. Compounds of flavonoids may damage the cytoplasmic membrane, which causes leaking of important metabolites and disabling bacterial enzyme systems. This damage allows the nucleotides and amino acids on bacteria seeped out and prevents the inclusion of the active substances into the cell and causes cell death.[26]


   Conclusions Top


Based on the study, it can be concluded that the combination of Noni fruit extract and Pandan leaves extract can inhibit the growth of bacteria isolated from dandruff. Therefore, combination of both extracts potential as an anti-dandruff shampoo.

Financial support and sponsorship

The authors would like to thank the Indonesian Ministry of Research, Technology and Higher Education, for providing research fund with “Hibah Bersaing” program with the Research Agreement Letter No. 007/K6/KM/SP2H/PENELITIAN_BATCH 1/2015, dated March 30th, 2015.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Niharika A, Aquicio JM, Anand A. Antifungal properties of Neem (Azardirachta indica) leaves extract to treat hair dandruff. E-Int Sci Res J 2010;2:244-52.  Back to cited text no. 1
    
2.
Pamungkas BT, Muktiwardojo M, Rostinawati T. Review: Antibacterial activities of various parts of Mengkudu (Morinda citrifolia L.) plants on some species of bacteria. J Trop Pharm Chem 2019;4:244-9.  Back to cited text no. 2
    
3.
Usha R, Sashidharan S, Palaniswamy M. Antimicrobial activity of a rarely known species, Morinda citrifolia L. Ethnobot Leaf 2010;14:306-11.  Back to cited text no. 3
    
4.
Kumar KT, Panda DS, Nanda UN, Khuntia S. Evaluation of antibacterial, antifungal and anthelmintic activity of Morinda citrifolia L. (Noni). Int J Pharmtech Res 2010;2:1030-2.  Back to cited text no. 4
    
5.
Srinivasahan V, Durairaj B. Antimicrobial activities of hydroethanolic extract of Morinda citrifolia fruit. Int J Curr Microbiol App Sci 2014;3:26-33.  Back to cited text no. 5
    
6.
Sharma MC, Sharma S. Phytochemical screening of methanolic extract and antibacterial activity of Eclipta alba and Morinda citrifolia L. Middle East J Sci Res 2010;6:445-9.  Back to cited text no. 6
    
7.
Sunder J, Singh DR, Jeyakumar S, Kundu A, De AR. Antibacterial activity in solvent extract of different parts of Morinda citrifolia plant. J Pharm Sci Res 2011;3:1404-7.  Back to cited text no. 7
    
8.
Ahmed AS, Charles PD, Cholan R, Russia M, Surya R, Jailance L. Antibacterial efficacy and effect of Morinda citrifolia L. mixed with irreversible hydrocolloid for dental impressions: A randomized controlled trial. J Pharm Bioallied Sci 2015;7:S597-9.  Back to cited text no. 8
    
9.
Minh NP, Vo TT, Man LV, Phong TD, Toan NV, Nam VH. Green pigment extraction from Pandan (Pandanus amaryllifolius) and its application in food iIndustry. J Pharm Sci Res 2019;11:925-9.  Back to cited text no. 9
    
10.
Dumaoal OS, Alaras LB, Sarah KG, Depadua AA, Pulmones CJ. In vitro activity of Pandan (Pandanus amaryllifolius Roxb.) leaves crude extract against selected bacterial isolates. Nat Peer Rev J 2010;4:102-24.  Back to cited text no. 10
    
11.
Faras AF, Wadkar SS, Ghosh JS. 2014. Effect of extract of Pandanus amaryllifolius (Roxb.) on growth of Escherechia coli and Micrococcus (Staphylococcus) aureus. Int Food Res J 2014;1:421-3.  Back to cited text no. 11
    
12.
Aruna MS, Rao NR, Deepthi B, Prasanna JL, Prabha MS. Ashyuka: A hub of medicinal values. IJKBR 2013;4:1043-9.  Back to cited text no. 12
    
13.
Nedialkova D, Naidenova M. Screening the antimicrobial activity of Actinomycetes strains isolated from antarctica. J Cult Coll 2005;4:29-35.  Back to cited text no. 13
    
14.
Natheer SE, Sekar C, Amutharaj P, Rahman MS, Khan KF. Evaluation of antibacterial activity of Morinda citrifolia, Vitex trifolia and Chromolaena odorata. Afr J Pharm Pharmaco 2012;6:783-8.  Back to cited text no. 14
    
15.
Devi CH, Khrishna DG. Phytochemical screening, antibacterial, antifungal and antihelmintic activity of Morinda citrifolia stem. J Pharmacogn Phytochem 2013;2:155-17.  Back to cited text no. 15
    
16.
Boel DT. Antibacterial effectiveness of noni extract (Morinda citrifolia L.) on the growth of Fusobacterium nucleatum (ATCC® 25586™) as an alternative material for root canal irrigation- An in vitro study. J Evolution Med Dent Sci 2019;8:1046-8.  Back to cited text no. 16
    
17.
Murhadi M, Suharyono AS, Susilawati S. Antibacterial activity of (Syzygium Polyanta and amaryllifolius) leaf extracts. JTIP 2007;18:17-24.  Back to cited text no. 17
    
18.
Ambarwati A, Sujono TA, Sintowati R. Combination extracts of Pandan Wangi Leaves (Pandanus amaryllifolius Roxb.) and Mengkudu Fruits (Morinda citrifolia) as Antifungal Against Fungi Causes Dandruff. JIFI 2017;15:96-101.  Back to cited text no. 18
    
19.
Kakad SL, Pise SS, Dhembares AJ. Evaluation of phtochemical, antibacterial, antifungal activities of leaf extracts of Morinda citrifolia (Linn). Der Pharmacia Sinica 2015;6:19-2.  Back to cited text no. 19
    
20.
Aini R, Mardiyaningsih A. Pandan leaves extract (Pandanus amaryllifolius Roxb) as a food preservative. JKKI 2016;7:166-73.  Back to cited text no. 20
    
21.
Enwa FO. Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens – A review. J Pharm Chem Biol Sci 2014;2:77-85.  Back to cited text no. 21
    
22.
Mabhiza D, Chitemerere T, Mukanganyama S. Antibacterial properties of alkaloid extracts from callistemon citrinus and vernonia adoensis against staphylococcus aureus and pseudomonas aeruginosa. Int J Med Chem 2016;2016:6304163.  Back to cited text no. 22
    
23.
Suwannakul S, Chaibenjawong P, Suwannakul S. Antioxidant anti-cancer and antimicrobial activitiesof ethanol Pandanus amaryllifolius Roxb. leaf extract (In vitro)-A potential medical application. J Int Dent Med Res 2018;11:383-9.  Back to cited text no. 23
    
24.
Elo H, Kuure M, Pelttari E. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity. Eur J Med Chem 2015;92:750-3.  Back to cited text no. 24
    
25.
Coppo E, Marchese A. Antibacterial activity of polyphenols. Curr Pharm Biotechnol 2014;15:380-90.  Back to cited text no. 25
    
26.
Levison ME. Pharmacodynamics of antimicrobial drugs. Infect Dis Clin North Am 2004;18:451-65.  Back to cited text no. 26
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Subjects and Methods
   Results
   Discussion
   Conclusions
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed468    
    Printed10    
    Emailed0    
    PDF Downloaded72    
    Comments [Add]    

Recommend this journal