Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1628  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission




 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2021  |  Volume : 13  |  Issue : 6  |  Page : 969-974  

Impact of tooth loss position on oral health-related quality of life in adults treated in the community


Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

Date of Submission18-Feb-2021
Date of Decision26-Mar-2021
Date of Acceptance12-Apr-2021
Date of Web Publication10-Nov-2021

Correspondence Address:
Ahmad Yahya Imam
Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.jpbs_87_21

Rights and Permissions
   Abstract 


Background: Tooth loss is known to have negative effects on both functional and psychological oral health-related quality of life (OHRQoL), but the impact of the position of the tooth loss (i.e. anterior or posterior) on the different psychosocial dimensions of OHRQoL has yet to be examined. Here, we examined how the position of lost teeth impacts the different dimensions of OHRQoL. Methods: This was a cross-sectional epidemiological study of adults aged 18 years and older attending routine examinations at primary care dental centers in Jeddah, Kingdom of Saudi Arabia. Demographic information was collected, and OHRQoL was assessed using the Oral Health Impact Profile-14 (OHIP-14) (Arabic form). Differences in total and subdomain OHIP-14 scores between individuals without tooth loss and those with ≥1 anterior or posterior missing teeth were assessed using Student's t-test, and analysis of covariance was used to assess the association between the presence and absence of missing teeth in each compartment and total and subdomain OHIP-14 scores after controlling for age, gender, and income. Results: The overall prevalence of tooth loss was 76%. In multivariate analysis controlling for age, gender, and income as covariates, anterior missing teeth were significantly associated with higher OHIP-14 total, physical pain, physical disability, psychological disability, and social disability scores, accounting for 6%–12% of the score variance. However, posterior missing teeth were only associated with total OHIP-14 and functional limitations domain scores, accounting for 6% and 7% of the variance, respectively. Conclusions: Here, we show for the first time the impact of the location of missing teeth on different OHRQoL dimensions. Anterior tooth loss has a wide-ranging impact on both physical and psychosocial functioning compared to posterior tooth loss, suggesting that anterior tooth restoration should be prioritized when treatment planning. The position of lost teeth must be considered in addition to the number of losses when examining the impact of tooth loss and its treatment on OHRQoL.

Keywords: Oral health-related quality of life, psychosocial functioning, tooth loss, tooth position


How to cite this article:
Imam AY. Impact of tooth loss position on oral health-related quality of life in adults treated in the community. J Pharm Bioall Sci 2021;13, Suppl S2:969-74

How to cite this URL:
Imam AY. Impact of tooth loss position on oral health-related quality of life in adults treated in the community. J Pharm Bioall Sci [serial online] 2021 [cited 2022 Jun 25];13, Suppl S2:969-74. Available from: https://www.jpbsonline.org/text.asp?2021/13/6/969/330150




   Introduction Top


Quality of life (QoL) is an important parameter to consider when assessing health status and treatment outcomes in dental patients. Oral health-related QoL (OHRQoL) describes the impact of orofacial conditions and dental interventions as perceived by the patient.[1] OHRQoL is a multidimensional concept that is influenced by physical health, psychology, social interactions, and the environment and as a consequence, standardized instruments have been designed to capture the different composite domains of OHRQoL.[1] One of the most widely used is the Oral Health Impact Profile-14 (OHIP-14), a short form self-reporting questionnaire comprising 14 items divided into seven dimensions of impact (functional limitation, pain, psychological discomfort, physical disability, psychological disability, social disability, and handicap).[2] The OHIP-14 has been shown to be reliable,[2] sensitive to changes,[3],[4] and have cross-cultural consistency[5] including in Arabic.[6]

Tooth loss remains a significant public health burden in Saudi Arabia, with a recent study reporting a 69% prevalence of tooth loss in a convenience sample of over 600 subjects in Riyadh, Saudi Arabia.[7] Since teeth are vital to mastication, speech, and facial esthetics, tooth loss can have a significant impact both on the individual and society. In meta-analyses and systematic reviews, tooth loss has been shown to have negative effects on both functional and psychological OHRQoL independent of the instrument used or the social context.[8],[9],[10],[11] Furthermore, in our recent analysis of occlusal traits and OHRQoL, we found that tooth loss was the only independent predictor of high total OHIP-14 scores in a community sample of adults attending primary care clinics in Jeddah, Saudi Arabia, even when controlling for factors such as age, gender, and income.[12]

However, few studies have examined how the position of the tooth loss (i.e. anterior or posterior) affects OHRQoL or how different tooth loss locations affect the different functional and psychosocial dimensions of impact. Therefore, here, we examined how the position of lost teeth impacts the different dimensions of OHRQoL, hypothesizing that teeth lost from different areas of the mouth will have a differential impact on OHRQoL dimensions.


   Methods Top


Study design

This was a cross-sectional epidemiological study of adults aged 18 years and older attending routine examinations at primary care dental centers in Jeddah, Kingdom of Saudi Arabia. The local institution's ethical board review approved the study protocol, and all patients gave written informed consent after reading the study details.

Inclusion criteria, exclusion criteria, and sampling

The primary health-care centers were geographically located in five areas of the city (north, south, west, east, and center) according to the KSA Ministry of Health. The inclusion criteria were patients aged 18 years and above who were medically healthy and syndrome free. Subjects who had received previous orthodontic treatment were excluded.

Sampling and assessment metrics

A cluster sampling approach was employed to recruit twenty participants from each geographical area, resulting in a total sample of 100 participants. Collected data included demographic information and OHRQoL assessed using the OHIP-14 (Arabic form).[6] Age was subcategorized into three groups (18–40, 41–60, and >60), while income levels were categorized into six groups. Each OHIP question is answered on a five-point Likert scale (0–4), and total scores were obtained by summing the scores of each of the 14 questions. Mean domain scores were calculated by dividing the sum of the subdomain score by the number of questions in that subdomain. Higher OHIP-14 scores indicated worse OHRQoL.

The presence of missing teeth and their location, where the incisors and canines were regarded as anterior teeth and the premolars and molars were regarded as posterior teeth, were recorded during clinical examination by three calibrated examiners. Clinical examination was completed in the clinic's dental chair with an examination kit.

Statistical analysis

Each subject was assigned a unique identifier code, and data were deidentified. Data analysis was conducted using the Statistical Package for the Social Sciences program v. 22 (IBM SPSS Inc., Chicago, IL, USA). Differences in total and subdomain OHIP-14 scores between tooth loss groups (no missing teeth vs. ≥1 missing teeth) were assessed using Student's t-test. Analysis of covariance was conducted to assess the association between presence and absence of missing teeth in each compartment and total and subdomain OHIP-14 scores after controlling for age, gender, and income as confounding variables. Results were considered statistically significant if the P < 0.05.


   Results Top


All invited participants agreed to participate but, after exclusion of patients who had received previous orthodontic treatment and patients with missing data, 87 patients were available for final analysis. 54% were male and 46% were female [Table 1]. Participants were fairly evenly distributed across all income brackets (15%–20%) except for the lowest and highest income brackets, comprising 28.7 and 1.1% of participants, respectively [Table 1].
Table 1: Clinical and demographic features of the study participants

Click here to view


The overall prevalence of ≥1 missing teeth was high (76%). Although the prevalence of missing teeth was about equal according to gender, there was a particularly high prevalence of missing teeth in the 19–40-year age group (90.3% vs. approximately 70% in the older age groups) and in income level 0 and 1 groups (80% and 93.8%, respectively) compared to higher income levels groups (~65%).

Since we previously showed that missing teeth were the only occlusal trait associated with total OHIP-14 scores,[12] we next examined how the position of the missing teeth influenced OHRQoL according to both total OHIP-14 scores and subdomain scores. In univariate analysis [Table 2], one or more missing anterior teeth was significantly associated with higher (i.e. worse OHRQoL) total scores (17.2 vs. 25.1; P = 0.04) and physical pain (1.9 vs. 3.4; P = 0.02) and social disability (2.3 vs. 4.3; P = 0.008) domain scores. One or more missing posterior teeth were associated with higher functional limitation (2.1 vs. 3.9; P - 0.008) and psychological discomfort (2.9 vs. 4.2; P = 0.04) scores. Total and domain OHP-14 scores were not significantly different according to gender, age, or income, except for the psychological disability domain, which was significantly higher younger patients. In multivariate analysis controlling for age, gender, and income as covariates [Table 3], anterior missing teeth were significantly associated with higher OHIP-14 total, physical pain, physical disability, psychological disability, and social disability scores, accounting for 6%–12% of the variance in scores. However, posterior missing teeth were only associated with total OHIP-14 and functional limitations domain scores, accounting for 6% and 7% of the variance, respectively.
Table 2: Univariate analysis of associations between missing tooth position and total and subdomain oral health impact profile-14 scores

Click here to view
Table 3: Analysis of covariance analysis of associations between missing tooth position and total and domain oral health impact profile-14 scores

Click here to view



   Discussion Top


Here, building on our previous study of the impact of occlusal traits on OHRQoL,[12] we provide granularity to the impact of missing teeth on the OHRQoL of adult patients in the primary care setting. While both anterior and posterior missing teeth had an impact the overall OHRQoL as measured by the OHIP-14 instrument, the position of the missing tooth had a differential impact on the patient. While posterior missing teeth only impacted function, anterior missing teeth had a much broader impact on patients, not only affecting them in terms of pain and physical disability but also in the psychosocial dimensions. Although the magnitude of the effect of missing teeth was small (<0.2 according to Cohen's guidelines[13]), these data nevertheless confirm our own and previous studies that unrestored missing teeth have a significant effect on patients' QoL[8],[9],[12],[14] and suggest that restoration planning should prioritize anterior teeth to optimize QoL outcomes. The prevalence of missing teeth in our population (76%) was high and similar to previous studies reporting similarly high prevalence of missing teeth in other populations (Saudi Arabia and the UK) of between 62.5 and 94.4%.[7],[15],[16]

Missing teeth, and in particular the number of missing teeth, have generally been shown to have a negative impact on QoL, particularly in younger adults.[9] In their meta-analysis of similar studies using OHIP instruments to measure OHRQoL, Gerritsen et al.[8] reported that the impact on OHRQoL was proportional to the number of teeth lost, with a marked deterioration in OHRQoL in individuals with <17 teeth from three cross-sectional surveys representing over 13,000 individuals.[17],[18] Similarly, in their recent study of 152 adults attending dental clinics in Riyadh, Saudi Arabia, Anbarserri et al.[14] reported that OHIP-14 scores were proportional to the number of teeth lost. Here, we compared complete dentition with tooth loss of one or more teeth, similar to Lawrence et al.,[19] who similarly found using the OHIP-14 that loss of one or more teeth was significantly associated with OHRQoL after adjusting for sex and “episodic” dental care.

However, fewer studies have examined the impact of the position of tooth loss on OHRQoL. Pallegedara and Ekanayake,[20] although examining elderly individuals with large numbers of missing teeth rather than our younger population with as few as only one missing tooth, found that individuals with anterior spaces were significantly more likely to have higher OHIP-14 scores. Using the OHIP-49, Walter et al.[21] similarly found that missing anterior teeth were independently and most strongly associated with impaired OHRQoL in adjusted analysis of adult patients attending dental outreach clinics. Similarly, Batista et al.[22] found that having one or more missing teeth including one in the anterior position had a greater impact on OHRQoL than fully dentate adult patients.

Our data now add to this growing body of evidence that the location of missing teeth impacts OHRQoL, with anterior tooth loss having a greater impact than posterior tooth loss (11% of the variation vs. 6% of the variation in adjusted analyses), not only on function but also psychosocial domains. It has been suggested that the greater impact of anterior missing teeth reflects the importance of esthetics and appearance in dictating the psychosocial morbidity associated with tooth loss.[22] Indeed, when examining the domains most affected by tooth loss location, we found that anterior loss affected psychological disability and social disability scores, while posterior loss did not, objectively supporting this hypothesis. Few studies have examined the specific domains affected by tooth loss. While Anbarserri et al.[14] found that tooth loss significantly affected the functional limitation and social disability domains, which we found were impacted most by posterior and anterior tooth loss, respectively, they did not examine tooth loss position in relation to OHIP-14 subdomains. Similarly, in their meta-analysis of twenty study samples with missing teeth, Schierz et al.[11] established that the impact of missing teeth on oral function, as measured by OHIP scores for the physical disability domain, was typically around 1.9 units, but these data were not separated by tooth position. Our data support that missing teeth impact both functional and psychosocial OHRQoL but that tooth position is a critical determinant of exactly how individuals are affected.

Our study has a number of limitations. This was relatively small sample from a single city, so the results may not be generalizable; however, we used a cluster sampling approach to attain a representative population. The OHIP-14 is a self-reported instrument, so may be subject to bias; however, the OHIP-14, despite being a short questionnaire, has been shown to be reliable,[2] sensitive to changes,[3],[4] and have cross-cultural consistency.[5] Our study is strengthened by adjusting for the effect of gender, age, and income, which are known to impact OHRQoL.[23],[24] Future studies should include other covariates such as educational level and caries experience to further establish the relative contributions of these factors in overall OHRQoL.


   Conclusions Top


Here, we show for the first time the impact of the location of missing teeth on different dimensions of OHRQoL. Anterior tooth loss has a more wide-ranging impact on both physical and psychosocial functioning than posterior tooth loss, suggesting that anterior tooth restoration should be prioritized when treatment planning. The position of lost teeth must be considered in addition to the number of losses when examining the impact of tooth loss and its treatment on OHRQoL.

Acknowledgements

The author would like to acknowledge Dr. Talal Zahid for his help in coordinating the data collection teams and Dr. Shoroog Agou for reviewing the manuscript.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Sischo L, Broder HL. Oral health-related quality of life: What, why, how, and future implications. J Dent Res 2011;90:1264-70.  Back to cited text no. 1
    
2.
Slade GD. Derivation and validation of a short-form oral health impact profile. Community Dent Oral Epidemiol 1997;25:284-90.  Back to cited text no. 2
    
3.
Locker D, Jokovic A, Clarke M. Assessing the responsiveness of measures of oral health-related quality of life. Community Dent Oral Epidemiol 2004;32:10-8.  Back to cited text no. 3
    
4.
Allen PF, McMillan AS, Locker D. An assessment of sensitivity to change of the oral health impact profile in a clinical trial. Community Dent Oral Epidemiol 2001;29:175-82.  Back to cited text no. 4
    
5.
Allison P, Locker D, Jokovic A, Slade G. A cross-cultural study of oral health values. J Dent Res 1999;78:643-9.  Back to cited text no. 5
    
6.
Khalifa N, Allen PF, Abu-bakr NH, Abdel-Rahman ME. Psychometric properties and performance of the oral health impact profile (OHIP-14s-ar) among Sudanese adults. J Oral Sci 2013;55:123-32.  Back to cited text no. 6
    
7.
Almusallam SM, AlRafee MA. The prevalence of partial edentulism and complete edentulism among adults and above population of Riyadh city in Saudi Arabia. J Family Med Prim Care 2020;9:1868-72.  Back to cited text no. 7
  [Full text]  
8.
Gerritsen AE, Allen PF, Witter DJ, Bronkhorst EM, Creugers NH. Tooth loss and oral health-related quality of life: A systematic review and meta-analysis. Health Qual Life Outcomes 2010;8:126.  Back to cited text no. 8
    
9.
Haag DG, Peres KG, Balasubramanian M, Brennan DS. Oral conditions and health-related quality of life: A systematic review. J Dent Res 2017;96:864-74.  Back to cited text no. 9
    
10.
Kudsi Z, Fenlon MR, Johal A, Baysan A. Assessment of psychological disturbance in patients with tooth loss: A systematic review of assessment tools. J Prosthodont 2020;29:193-200.  Back to cited text no. 10
    
11.
Schierz O, Baba K, Fueki K. Functional oral health-related quality of life impact: A systematic review in populations with tooth loss. J Oral Rehabil 2021;48:256-70.  Back to cited text no. 11
    
12.
Agou SH. The association between occlusal traits and oral health related quality of life among adults in primary care settings in Saudi Arabia. Egypt Dent J 2020;66:1999-2006.  Back to cited text no. 12
    
13.
Cohen J. Some statistical issues in psychological research. In: Handbook Clinical Psychology. New York: McGraw-Hill; 1965. p. 95-121.  Back to cited text no. 13
    
14.
Anbarserri NM, Ismail KM, Anbarserri H, Alanazi D, AlSaffan AD, Baseer MA, et al. Impact of severity of tooth loss on oral-health-related quality of life among dental patients. J Family Med Prim Care 2020;9:187-91.  Back to cited text no. 14
[PUBMED]  [Full text]  
15.
Almutairy A, Mohan M. Prevalence of partial edentulism among young Saudi women of Qassim and their perception of early tooth loss. Int J Dent Res 2017;5:172-6.  Back to cited text no. 15
    
16.
Heidari E, Banerjee A, Newton JT. Oral health status of non-phobic and dentally phobic individuals; a secondary analysis of the 2009 Adult Dental Health Survey. Br Dent J 2015;219:E9.  Back to cited text no. 16
    
17.
Lahti S, Suominen-Taipale L, Hausen H. Oral health impacts among adults in Finland: Competing effects of age, number of teeth, and removable dentures. Eur J Oral Sci 2008;116:260-6.  Back to cited text no. 17
    
18.
Steele JG, Sanders AE, Slade GD, Allen PF, Lahti S, Nuttall N, et al. How do age and tooth loss affect oral health impacts and quality of life? A study comparing two national samples. Community Dent Oral Epidemiol 2004;32:107-14.  Back to cited text no. 18
    
19.
Lawrence HP, Thomson WM, Broadbent JM, Poulton R. Oral health-related quality of life in a birth cohort of 32-year olds. Community Dent Oral Epidemiol 2008;36:305-16.  Back to cited text no. 19
    
20.
Pallegedara C, Ekanayake L. Effect of tooth loss and denture status on oral health-related quality of life of older individuals from Sri Lanka. Community Dent Health 2008;25:196-200.  Back to cited text no. 20
    
21.
Walter MH, Woronuk JI, Tan HK, Lenz U, Koch R, Boening KW, et al. Oral health related quality of life and its association with sociodemographic and clinical findings in 3 northern outreach clinics. J Can Dent Assoc 2007;73:153.  Back to cited text no. 21
    
22.
Batista MJ, Lawrence HP, de Sousa Mda L. Impact of tooth loss related to number and position on oral health quality of life among adults. Health Qual Life Outcomes 2014;12:165.  Back to cited text no. 22
    
23.
Andersen RM, Davidson PL. Ethnicity, aging, and oral health outcomes: A conceptual framework. Adv Dent Res 1997;11:203-9.  Back to cited text no. 23
    
24.
Tsakos G, Allen PF, Steele JG, Locker D. Interpreting oral health-related quality of life data. Community Dent Oral Epidemiol 2012;40:193-200.  Back to cited text no. 24
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Methods
   Results
   Discussion
   Conclusions
    References
    Article Tables

 Article Access Statistics
    Viewed308    
    Printed6    
    Emailed0    
    PDF Downloaded51    
    Comments [Add]    

Recommend this journal