Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1687  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2022  |  Volume : 14  |  Issue : 1  |  Page : 25-30

Detection of astaxanthin at different regions of the brain in rats treated with astaxanthin nanoemulsion


1 Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
2 Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
3 Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, Bandar Puncak Alam; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Correspondence Address:
Dr. Gurmeet Kaur Surindar Singh
Level 11, FF1 Building, Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor
Malaysia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.jpbs_464_21

Rights and Permissions

Context: Astaxanthin (Ast), a compound used widely as a dietary supplement, has high antioxidant properties but poor oral bioavailability. To benefit from its nutritional values in cognitive function, Ast was formulated into a nanoemulsion which may improve its penetration through the blood–brain barrier (BBB). Aim: The present study aims to quantitate the Ast nanoemulsion in different regions of the brain tissue using the high-performance liquid chromatography method. Materials and Methods: Sprague–Dawley rats were fed with Ast nanoemulsion formulation daily (40, 80, and 160 mg/kg body weight, bw) for 28 days before brain tissues were harvested, extracted, and quantified. A simple, sensitive, and reliable method using high-performance liquid chromatography with an ultraviolent detector was developed and validated to quantify Ast in the brain. Statistical Analysis: Data were analyzed using the ToolPak Data Analysis in Excel for t-test and analysis of variance single factor with Tukey post hoc analysis. Results: The calibration curve demonstrated a linear regression with an r2 of 0.9998 and absolute recovery ranging from 97.8% to 109.6%. The hippocampus of the 160 mg/kg bw treatment group showed a significantly higher concentration of Ast (77.9 ± 17.3 μg/g) compared to the cortex (22.3 ± 4.2 μg/g) and cerebellum (33.1 ± 5.4 μg/g). Ast was detected in the cerebellum of the 80 mg/kg bw (29.4 ± 7.8 μg/g) treatment group with the amount not being significantly different to the 160 mg/kg bw (33.1 ± 5.4 μg/g) treatment group. Conclusions: It was evident that the Ast nanoemulsion formulated was able to cross the BBB and may provide protective benefits.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

suppl
 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed790    
    Printed36    
    Emailed0    
    PDF Downloaded135    
    Comments [Add]    

Recommend this journal