Journal of Pharmacy And Bioallied Sciences

ORIGINAL ARTICLE
Year
: 2021  |  Volume : 13  |  Issue : 5  |  Page : 527--531

Copolymerization of ring-opening oxaspiro comonomer with denture base acrylic resin by free-radical/cationic hybrid polymerization


Ranganathan Ajay1, Vikraman Rakshagan2, Murugesan Sreevarun3, Dharanividhya Bhuvaneshkumar4, Sekaran SajidaBegum4, Veerakumar Vignesh4 
1 Department of Prosthodontics and Crown and Bridge, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
2 Department of Prosthodontics and Implant Dentistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
3 Department of Prosthodontics and Crown and Bridge, Best Dental Science College and Hospital, Madurai, Tamil Nadu, India
4 Department of Prosthodontics and Crown and Bridge, Vinayaka Missions Sankarachariyar Dental College and Hospital, Salem, Tamil Nadu, India

Correspondence Address:
Ranganathan Ajay
Department of Prosthodontics and Crown and Bridge, Vivekanandha Dental College for Women, Elayampalayam, Tiruchengode, Namakkal - 637 205, Tamil Nadu
India

Background: Polymerization shrinkage is an innate characteristic of thermo-polymerized denture base acrylic resin. Volumetric shrinkage is still a problem, although myriad material modifications. Ring-opening oxaspiro monomers have promising volumetric expansions of about 7%. These monomers have diminished the shrinkage in dental filling resins through copolymerization (CP). However, their CP with denture base resins is not reported yet. Purpose: The aim is to confirm the CP of an oxaspiro monomer with methyl methacrylate (MMA) by radical-cationic hybrid polymerization and to assess the degree of conversion (DC) of the formed copolymer. Materials and Methods: The oxaspiro monomer was synthesized by a transesterification reaction. The study groups were based on the composition and thermo-polymerization method. The control and E1 groups were thermo-polymerized in water-bath, whereas the E2 group in a laboratory autoclave. Both E1 and E2 groups contained the oxaspiro monomer and cationic initiator. E2 group had an additional radical initiator. The CP and DC were confirmed and assessed by infrared spectroscopy. Results: Accentuation of carbonyl peak, the disappearance of the spiro-carbon peak, and the appearance of ether linkages in experimental groups confirmed the ring-opening. E2 group had the highest DC. Conclusion: The oxaspiro monomer successfully copolymerized with MMA and had good DC.


How to cite this article:
Ajay R, Rakshagan V, Sreevarun M, Bhuvaneshkumar D, SajidaBegum S, Vignesh V. Copolymerization of ring-opening oxaspiro comonomer with denture base acrylic resin by free-radical/cationic hybrid polymerization.J Pharm Bioall Sci 2021;13:527-531


How to cite this URL:
Ajay R, Rakshagan V, Sreevarun M, Bhuvaneshkumar D, SajidaBegum S, Vignesh V. Copolymerization of ring-opening oxaspiro comonomer with denture base acrylic resin by free-radical/cationic hybrid polymerization. J Pharm Bioall Sci [serial online] 2021 [cited 2022 Jun 26 ];13:527-531
Available from: https://www.jpbsonline.org/article.asp?issn=0975-7406;year=2021;volume=13;issue=5;spage=527;epage=531;aulast=Ajay;type=0