Journal of Pharmacy And Bioallied Sciences

ORIGINAL ARTICLE
Year
: 2022  |  Volume : 14  |  Issue : 1  |  Page : 25--30

Detection of astaxanthin at different regions of the brain in rats treated with astaxanthin nanoemulsion


Mazzura Wan Chik1, Meor Mohd Redzuan Meor Mohd Affandi2, Gurmeet Kaur Surindar Singh3 
1 Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
2 Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
3 Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, Bandar Puncak Alam; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Correspondence Address:
Dr. Gurmeet Kaur Surindar Singh
Level 11, FF1 Building, Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor
Malaysia

Context: Astaxanthin (Ast), a compound used widely as a dietary supplement, has high antioxidant properties but poor oral bioavailability. To benefit from its nutritional values in cognitive function, Ast was formulated into a nanoemulsion which may improve its penetration through the blood–brain barrier (BBB). Aim: The present study aims to quantitate the Ast nanoemulsion in different regions of the brain tissue using the high-performance liquid chromatography method. Materials and Methods: Sprague–Dawley rats were fed with Ast nanoemulsion formulation daily (40, 80, and 160 mg/kg body weight, bw) for 28 days before brain tissues were harvested, extracted, and quantified. A simple, sensitive, and reliable method using high-performance liquid chromatography with an ultraviolent detector was developed and validated to quantify Ast in the brain. Statistical Analysis: Data were analyzed using the ToolPak Data Analysis in Excel for t-test and analysis of variance single factor with Tukey post hoc analysis. Results: The calibration curve demonstrated a linear regression with an r2 of 0.9998 and absolute recovery ranging from 97.8% to 109.6%. The hippocampus of the 160 mg/kg bw treatment group showed a significantly higher concentration of Ast (77.9 ± 17.3 μg/g) compared to the cortex (22.3 ± 4.2 μg/g) and cerebellum (33.1 ± 5.4 μg/g). Ast was detected in the cerebellum of the 80 mg/kg bw (29.4 ± 7.8 μg/g) treatment group with the amount not being significantly different to the 160 mg/kg bw (33.1 ± 5.4 μg/g) treatment group. Conclusions: It was evident that the Ast nanoemulsion formulated was able to cross the BBB and may provide protective benefits.


How to cite this article:
Chik MW, Mohd Affandi MR, Singh GK. Detection of astaxanthin at different regions of the brain in rats treated with astaxanthin nanoemulsion.J Pharm Bioall Sci 2022;14:25-30


How to cite this URL:
Chik MW, Mohd Affandi MR, Singh GK. Detection of astaxanthin at different regions of the brain in rats treated with astaxanthin nanoemulsion. J Pharm Bioall Sci [serial online] 2022 [cited 2022 Dec 6 ];14:25-30
Available from: https://www.jpbsonline.org/article.asp?issn=0975-7406;year=2022;volume=14;issue=1;spage=25;epage=30;aulast=Chik;type=0